
Case Study of FlixAPI
Sanju Shah - Full Stack Developer

Overview

FlixAPI is an RESTful API developed with the Node.js

and express deployed in render that interacts with a

non-relational database - MongoDB and allows users

to access movie details and manage their accounts.

GitHub

https://github.com/sanjushahgupta/flix-api

Purpose

This project was created as part of Full-Stack

Immersion course at CareerFoundry to enhance my

skill in web development.

Objective

● The objective of this project was to build a server

side application from scratch that uses node.js,

express.

● Provide a Comprehensive Movie Database.

● Allow users to register, log in, update their
profiles, and manage their favourite lists.

Technology Stack

● Node.js as runtime environment for executing

JavaScript code on the server side.

● RESTful FlixAPI is created on Express.js

framework.

● For deploying and hosting FlixAPI, Render cloud

platform is used.

● MongoDB is used for storing movie and user data.

● For secure user authentication and authorization,

JSON Web Tokens is implemented.

● Display lists of movies and filter movie by genre, director.

● Display details of movies such as title, director, actors, plot summary, release year and genre.

● Register new user and enable existing users to log in with their credentials.

● Update user profiles such as email, password, and other profile details.

● Add/remove movie to the favorites list.

● Deregister users and delete their all associated data.

Features

Development Process

● Identified features such as movie details retrieval and manage account.

● Outlined API endpoints, request methods with expected responses.

● Set up a Node.js environment with Express.

● Configured MongoDB to store movie and user data and Mongoose for schema modeling.Implemented JWT

for secure user authentication.

● Configured environment variables for secure API key management and database connections.

● Deployed the application in render.

● Performed API testing with Postman to verify endpoint functionality.

● MongoDB for its NoSQL nature

○ Offering a cost-effective and flexible solution

○ Schema-less data model that supports rapid

iteration and diverse data handling

● Deployment on Render platform

○ Easiest and efficient platform for deployment

○ User-friendly interface and robust feature set

Database & Deployment

Currently Client Applications using FlixAPI

● MovieBox App : https://movie-box-glienicker.netlify.app/login

● FlixWorld App: https://sanjushahgupta.github.io/flix-client-angular/

https://movie-box-glienicker.netlify.app/login
https://sanjushahgupta.github.io/flix-client-angular/

Retrospective

Future Improvements

Looking ahead, I plan to enhance FlixAPI by adding
more features like sorting movies based on release
date and also notifying users when details of new
movies are added.

Challenge & Solution

While developing this application, implementing secure user
authentication and authorization proved to be quite
challenging.

With the guidance of a mentor and extensive research, I
successfully implemented secure authentication methods. This
included adopting HTTPS for secure data transmission, using
JWT (JSON Web Tokens) for stateless authentication, and
encrypting sensitive data to protect user information.

Conclusion

The experience of developing FlixAPI was a
journey of tackling challenges, learning new

technologies, and improving problem-solving skills.

The project has not only met its initial objectives

but has also laid a strong foundation for future

enhancements.

