C Study of FlixAPI

Sanju Shah - Full Stack Developer

Overview

FlixAPl is an RESTful API developed with the Node.j

and express deployed in render that interacts with.JS
non-relational database - MongoDB and allows usea
to access movie details and manage their accounts :

GitHub

GET https://flix—api—1faf,onrender,com/movies

Params Authorization @ aders (8)
|

Type Bearer Token @ Heads up! These parameters hold sensitive data. To keep this data secure while wc
recommend using variables. Learn more about variables.

ethchiOiJle\‘INi\slnRScCIle
01 Created Tim

Pretty Raw Preview

“Genre": 1
“Name": "Drama",
. "It portrays the rise of a young oxrph

1
2
4
5

an named Rocky from the streets of

prashanth Neel",
He gained widespread recognition and acclaim for d

980-06-04T00:00:00. 000Z"

irecting KGF. Lo

v Adye ”64996085c5119285l3f3b083f9”,

"Title": "Kolar",

"Actox "yash",

"Image "https://wallpapers. com/images/high/kgf-Iocky-bhai—riding»motoxcycle-Gasqrjly

"Featured": true,

wpescription": "Rocky, a high-rank
his high fame, his bosses hires him to assassinate Garuda,

ing mercenary in Mumbai seeks power and wealth in order e
the son of the founder of Ko

"Genre": §
"Name" "Action",
"pescription”: "Epic historical action £ilm"

https://github.com/sanjushahgupta/flix-api

Purpose

This project was created as part of Full-Stack

Im i
.m.er5|on course at CareerFoundry to enhance my
skill in web development.

CONSt USSIaL=iifi-mstmi e

app.use(cors());
app.use(express.static(‘public'));
app.use(express.json());
app.use(bodyParser.json());

module.exports.listOsters = function (req, res) {
usersService.listOfAllUsers().then(result = {
iif (Array.isArray(result) && result.length > 0)
return res.status(zol).json(result);
I
return res.status(400).send('Unable to fetch uc
}).catchnerror = {
\ return "Error:", error
* }m

¥

module.exports.registerUser = function (reaq, res) {
const errors = validationResult(req);

if (!errors.isEmpty()) {
return res.status(422).json({ error: errors.atl

Le2"2r9g =
o f {ne ¥33)"l2ou({ eLLoL:
ey = fq

. Objective

movieDB.movies

TOTALDOCUMENTS: 10 iNpEx

Find
ensrote queies rom notura ang e The objective of this project was to build a server
urallanguage in Compass®
m— side application from scratch that uses node.js,
| o express.

110 OF 10

e Provide a Comprehensive Movie Database.

e Allow users to register, log in, update their
profiles, and manage their favourite lists.

com/images/high /kg
es/high/kef-rocky-bhai-rigin t
ng-motorcycle "
cycle-6a..
a high-ranking merce
g mercenary in Mumbai s
nd wealth §n or.»
alth in or.n

_id: ob
Title
* Genre : Object
» Director
= IMmage : "ht

Object

985 o
» DiLECEOL
» @euLe @ OP

s ,RISPNPILiu
L4656 2 WBSONTE i 19acLpa3ERPA3PABIL.)

Technology Stack

e Node.js as runtime environment for executing
JavaScript code on the server side. e

/** route to get details of movie by tittle */
app.get("/movies/:title", authJWT, movieController.movieByTitle);

/x* route to get details of movie by movie's genre x*/

e RESTful FlixAPl is created on Express.js
app.get(
framework.)

authJwT,
movieController.genreDescriptionByName
H

e Fordeploying and hosting FlixAPI, Render cloud
/*x route to get details of director's by directors name *x/
platform is used. et y

"/movies/directors/:name",
authJwT,
movieController.directorDetailsByName

e MongoDB is used for storing movie and user data.)i

/** route to register new user x/
app.post("/register", checkvValidation, userController.registerUser);

e Forsecure user authentication and authorization, G isitos St A
app.put("/updateUser", authJWT, checkValidation, userController.updateUser);
JSON Web Tokens is implemented.

Features

e Display lists of movies and filter movie by genre, director.

e Display details of movies such as title, director, actors, plot summary, release year and genre.
e Register new user and enable existing users to log in with their credentials.

e Update user profiles such as email, password, and other profile details.

e Add/remove movie to the favorites list.

e Deregister users and delete their all associated data.

Development Process

e Identified features such as movie details retrieval and manage account.

e Outlined APl endpoints, request methods with expected responses.
e SetupaNode.js environment with Express.

e Configured MongoDB to store movie and user data and Mongoose for schema modeling.Implemented JWT
for secure user authentication.

e Configured environment variables for secure APl key management and database connections.
e Deployed the applicationin render.

e Performed API testing with Postman to verify endpoint functionality.

Database & Deployment

e MongoDB for its NoSQL nature Allloass 20 NN & ¥ seareh
o Offering a cost-effective and flexible solution

. J 7 12:11:45 PM @ ==> Usi Nod i 14.17.0 (default)
o Schema-less data model that supports rapid o Sing Tode verston oret
. . . . Jun 7 12:11:45 PM @ ==> Docs on specifying a Node version: https://
iteration and diverse data handling Jun 7 12:11:49 P @ ==> Using Node version 14.17.6 (default)
Jun 7 12:11:49 PM @ ==> Docs on specifying a Node version: https://
J 7 12:11:49 PM @ ==> R i 'node index.js'
e Deployment on Render platform e prlbi e bt
Jun 7 12:11:53 PM @ App is listening in 10000

o Easiest and efficient platform for deployment
o User-friendly interface and robust feature set

Currently Client Applications using FlixAPI

e MovieBox App: https://movie-box-glienicker.netlify.app/login

e FlixWorld App: https://sanjushahgupta.github.io/flix-client-angular/

Movies Profile FlixWorld

https://movie-box-glienicker.netlify.app/login
https://sanjushahgupta.github.io/flix-client-angular/

Retrospective

Challenge & Solution

While developing this application, implementing secure user
authentication and authorization proved to be quite
challenging.

With the guidance of a mentor and extensive research, |
successfully implemented secure authentication methods. This
included adopting HTTPS for secure data transmission, using
JWT (JSON Web Tokens) for stateless authentication, and
encrypting sensitive data to protect user information.

Future Improvements

Looking ahead, | plan to enhance FlixAPI by adding
more features like sorting movies based on release
date and also notifying users when details of new
movies are added.

Conclusion

The experience of developing FlixAPl was a
journey of tackling challenges, learning new
technologies, and improving problem-solving skills.
The project has not only met its initial objectives
but has also laid a strong foundation for future
enhancements.

